
Docket No. 06013.P001Z
Express Mail No. EV049397517US 1

Attorney Docket No.: 06013.P001Z Provisional Patent Application

UNITED STATES PATENT APPLICATION FOR

LOCALIZED INTELLIGENT DATA MANAGEMENT FOR A STORAGE SYSTEM

INVENTORS:

PERRY MERRITT, BROOMFIELD, COLORADO
DON JESSUP, DENVER, COLORADO

KEVIN MARTINDALE, BOULDER, COLORADO
JAY MILLER, BOULDER, COLORADO
JUNE MULLINS, DENVER, COLORADO

DAN OISTER, WESTMINSTER, COLORADO

PREPARED BY:

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN LLP
12400 WILSHIRE BOULEVARD

SEVENTH FLOOR
LOS ANGELES, CA 90025-1030

(303) 740-1980

EXPRESS MAIL CERTIFICATE OF MAILING

“Express Mail ” maili ng label number: EV 049397517 US
Date of Deposit: February 12, 2002
I hereby certify that I am causing this paper or fee to be deposited with the United States
Postal Service “Express Mail Post Office to Addressee” service on the date indicated
above and that this paper or fee has been addressed to the Commissioner of Patents and
Trademarks, Washington, D. C. 20231

 Fran C. Rolfsen

(Typed or printed name of person maili ng paper or fee)

(Signature of person maili ng paper or fee)

(Date signed)

Docket No. 06013.P001Z
Express Mail No. EV049397517US 2

LOCALIZED INTELLIGENT DATA MANAGEMENT FOR A STORAGE SYSTEM

COPYRIGHT NOTICE

[0001] Contained herein is material that is subject to copyright protection. The

copyright owner has no objection to the facsimile reproduction of the patent disclosure by

any person as it appears in the Patent and Trademark Off ice patent files or records, but

otherwise reserves all rights to the copyright whatsoever.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] This invention generally relates to storage systems. More particularly, the

invention relates to a new paradigm for managing storage servers, such as Network

Attached Storage (NAS) systems, by initiating data management activity locally (e.g., by

a storage controller or the like) in response to predetermined events.

Description of the Related Art

[0003] Storage products are typically designed to function within a limited scope. They

are designed to store electronic data and to provide access to that stored data.

Management of these storage devices is left to external mechanisms, resulting in diff icult

configuration and management issues. For example, storage devices, whether network

attached or SCSI/Fibre channel attached, are not currently designed with a mechanism to

back up or replicate themselves to another storage device such as magnetic tape. The

consumer of the storage system is left with the task of creating a backup server, or

integrating the new storage device into an existing backup environment. In doing so, the

consumer is faced with many decisions including deciding the best data path to use for

Docket No. 06013.P001Z
Express Mail No. EV049397517US 3

transporting the electronic data from the storage device to the backup storage device and

when to schedule the backup so that the least interruption to service is incurred while

maintaining as complete a backup as possible.

[0004] Other issues such as replication to remote faciliti es, virus scanning, and

encryption are typically solved in a similar fashion. That is, an external mechanism is

brought into play to manage the electronic data stored on the storage device.

Docket No. 06013.P001Z
Express Mail No. EV049397517US 4

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0005] The present invention is ill ustrated by way of example, and not by way of

limitation, in the figures of the accompanying drawings and in which like reference

numerals refer to similar elements and in which:

[0006] Figure 1 is a block diagram that ill ustrates an architecture of a storage controller

in which the intelli gent data management system is installed according to one

embodiment of the present invention.

[0007] Figure 2 is a flow diagram that ill ustrates a process to insert the file system

filter in the operating system according to one embodiment of the present invention.

[0008] Figure 3 is a flow diagram that ill ustrates a process of replacing the standard

file system call sequence to include the file system filter according to one embodiment of

the present invention.

[0009] Figure 4 is a flow diagram that ill ustrates a general process of redirecting the

standard file system call sequence to the intell igent data management system according to

one embodiment of the present invention.

[0010] Figure 5 is a flow diagram that ill ustrates a general process of associating data

management applications with file system activity according to one embodiment of the

present invention.

[0011] Figure 6 ill ustrates a procedure for inserting policies into a policy store

according to one embodiment of the present invention.

[0012] Figure 7 ill ustrates a process of setting policy information in the extended

attributes of a file according to one embodiment of the present invention.

[0013] Figure 8 ill ustrates a general procedure for invoking policies for a given file

activity according to one embodiment of the present invention.

Docket No. 06013.P001Z
Express Mail No. EV049397517US 5

DETAILED DESCRIPTION OF THE INVENTION

[0014] Apparatus and methods are described for initiating data management activity for

one or more storage devices based on events, such as file system events or device events,

detected or occurring at an associated storage controller. Broadly stated, embodiments of

the present invention seek to localize and abstract data management activities. According

to one embodiment, an intelli gent data management utili ty resides in the storage

controller. The data management utili ty monitors and redirects file system activity

targeted to or originating from one or more storage devices and initiates appropriate data

management activity based upon the file system activity and user-administered policy-

based management.

[0015] According to one embodiment of the present invention, the problems described

above in the background are addressed by monitoring and redirecting file system activity.

For example, a file system filter may be inserted between the operating system’s virtual

file system and the file system and the filter may be coupled with an application interface

and transport mechanism. Doing so reverses the paradigm of storage devices being used

and managed by applications to that of storage devices using applications to manage

themselves.

[0016] In this example, the filter driver monitors events such as file open and file close.

When these events occur a message is sent from the filter driver through the transport to

the application interface. The application interface is able to invoke the appropriate

application and perform the desired operation(s).

[0017] In the following description, for the purposes of explanation, numerous specific

details are set forth in order to provide a thorough understanding of the present invention.

Docket No. 06013.P001Z
Express Mail No. EV049397517US 6

It will be apparent, however, to one skill ed in the art that the present invention may be

practiced without some of these specific details. In other instances, well -known

structures and devices are shown in block diagram form.

[0018] The present invention includes various steps, which will be described below.

The steps of the present invention may be performed by hardware components or may be

embodied in machine-executable instructions, which may be used to cause a general-

purpose or special-purpose processor programmed with the instructions to perform the

steps. Alternatively, the steps may be performed by a combination of hardware and

software or firmware.

[0019] The present invention may be provided as a computer program product which

may include a machine-readable medium having stored thereon instructions which may

be used to program a computer (or other electronic devices) to perform a process

according to the present invention. The machine-readable medium may include, but is

not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks,

ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, flash memory, or other

type of media / machine-readable medium suitable for storing electronic instructions.

Moreover, the present invention may also be downloaded as a computer program product,

wherein the program may be transferred from a remote computer to a requesting

computer by way of data signals embodied in a carrier wave or other propagation

medium via a communication link (e.g., a modem or network connection).

[0020] While, for convenience, embodiments of the present invention are described

with reference to particular operating systems, such as Unix and Linux, and storage

devices, such as NAS, the present invention is equally applicable to various other

Docket No. 06013.P001Z
Express Mail No. EV049397517US 7

operating systems and storage devices. For example, the Microsoft Windows operating

systems also make use of a virtual file system that resides above the actual file system

implementation. Like the Unix operating systems, the Windows architecture supports the

development of f ilter drivers that may be inserted in the sequence of f ile system events.

While the implementation specifics may vary, conceptually, the embodiments described

herein would function in the same manner. While NAS devices are a likely choice for

implementation of embodiments of the present invention, any storage device that utili zes

a file system to manage the allocation and storage of data is a candidate for utili zing

various features of the present invention.

Overview

[0021] A software framework that intelli gently connects applications to storage is

proposed. This intelli gent connection simpli fies some of the regular duties that are

associated with managing storage, such as backup, restore, virus prevention, and

archiving. These functions are artfully combined to provide a safe/secure/managed data-

environment that is simple and requires minimal human intervention. Under the novel

framework described herein, these features may be combined in various combinations to

provide tailored solutions that meet specific customer needs, thereby offering a solution

that substantially reduces the complexity and challenge of managing storage.

Replication

[0022] According to embodiments of the present invention, files may be protected from

inadvertent failures or mistakes by immediately making safe copies of f iles on a remote

Docket No. 06013.P001Z
Express Mail No. EV049397517US 8

storage device. Replication policies may be set to copy files immediately after they are

closed or on a scheduled basis. Replication is supported on virtually any storage device,

including: tape, Optical, NAS, SAN, or local storage devices.

Automated Backup

[0023] According to the framework described herein, file activity may be tightly

coupled to backup and restore services to take advantage of resident, proven backup and

restore applications. As with all of the features in the framework, backup may be policy

driven. Files may be backed up on demand or as a scheduled task. Advantageously, by

employing the automated backup feature described herein, backups become an integrated

part of the storage solution rather than an afterthought. Using new technologies, such as

iSCSI, local file storage and remote backup can be seamlessly installed, enhancing the

customer’s disaster recovery capabiliti es.

Auto-Restore

[0024] In most environments, a read failure necessitates a manual restore, requiring

human intervention (providing the requested file was protected by a backup copy).

However, according to embodiments of the present invention, since the framework

knows when a file has been requested, upon detecting a failed read command to the disk,

the requested file may be automatically restored from the secondary storage location.

Consequently, auto-restore saves time and money by transparently solving the problem.

Docket No. 06013.P001Z
Express Mail No. EV049397517US 9

Hierarchical Storage Management (HSM) / Transparent Automated Archiving

[0025] According to embodiments of the present invention, a framework is provided

that uniquely couples backups with HSM. For example, as soon as files are backed up,

they are candidates to be managed by the HSM feature. The HSM feature is policy

based. The HSM feature allows the primary storage to be used to manage current, active

files while older, less referenced files are released to the backup media. The result is a

self-managing system that gives the appearance of having the entire data set online while

requiring less online storage media (and associated management expense).

Inline Virus Scanning

[0026] According to embodiments of the present invention, the framework is able to

incorporate popular virus scanning technology, insuring a level of data integrity

previously unseen in a storage product. The inline virus scanning feature is policy driven

so that files may be scanned as soon as they are written and again before they are backed

up. The virus scan feature automatically updates itself with the latest virus detection files

so that the storage system is always current, discovering previously undetectable viruses

in the data population (and never replicating bad data). With the increasing occurrences

of new viruses, nearly every IT professional has a story about backing-up and restoring

infected data – and the painful productivity loss that results from this ‘ugly’ cycle.

Docket No. 06013.P001Z
Express Mail No. EV049397517US 10

Terminology

[0027] Brief definitions of terms used throughout this application are given below.

[0028] “Data management activity” or “data management processing” generally refer

functions related to administration and/or organization of data. Exemplary data

management activities including hierarchical storage management (HSM), storage

aggregation or virtualization, file replication, backup, virus scanning; encryption, and

decryption.

[0029] A “ filter” generally refers to a software mechanism that allows requests to flow

into it, monitors those requests, performs various actions based on the requests, and

allows requests to flow out of it.

[0030] In the context of the described embodiment, a “storage router” may generally be

thought of as a storage device that accepts as input requests and invokes various services

by routing the requests to appropriate services to process the requests, such as a storage

controller.

[0031] A “storage device” generally refers to a device including one or more storage

media. Examples of various storage devices contemplated include NAS servers, File

servers, RAID disk controllers, and the like.

[0032] In a standard operating system, such as Unix, Linux, and Windows, access to

file systems is provided through a mechanism known as the virtual file system (1), or

VFS. The VFS provides a standard interface to operating system allowing the file system

implementation to be transparent to the operating system. File systems (3) are only

required to conform to the published VFS interfaces. Below the file system reside the

device drivers (4) that provide block-level interface to the file system and device specific

access to the physical storage attached to the system.

Docket No. 06013.P001Z
Express Mail No. EV049397517US 11

[0033] In the storage controller depicted in Figure 1, a file system filter (2), hereafter

also known as filter, has been inserted between the file system and the VFS. The filter

provides two ioctl interfaces into the filter. One of the interfaces acts as a listener, while

the other acts as a sender. The Transport (5) uses these interfaces to receive commands

and communicate status, respectively.

[0034] The transport is linked to the Application Interface (7) through a private API.

The Transport is capable of instantiating multiple copies of the Application Interface to

process multiple files simultaneously. The Application Interface communicates with the

data management applications (6) and (8) through mechanisms such as command line

interfaces, sockets and scripts.

[0035] As file activity is sent to the application interface (7) the application interface

queries the policy store (8) for the appropriate actions to perform on the file. The policy

identifiers are stored with the file in the extended attributes of the file. The policy

identifier is set in the extended attributes through an application (9) designed to access

these attributes. The application (9) is able to read and write the extended attributes of a

file or set of f iles. There are various means for accessing the policy store, these include

specialized applications and Graphical user interfaces (10).

[0036] The filter may be inserted into the system any time after the file system (3) has

registered with the VFS (1). In the embodiment depicted in Figure 2, the process of

inserting the filter involves creating two sets of function pointers (11)(a set of “ in”

pointers and a set of “out” pointers) to link the filter to the VFS and the file system. The

“ in” function pointers replace the file system functions normally called by the VFS and

the “out” pointers refer to the file system functions. Thus, the VFS will call the functions

Docket No. 06013.P001Z
Express Mail No. EV049397517US 12

(12) in the filter driver as if it were calli ng the file system pointers and the filter will

either provide additional processing before passing the request to the file system

functions or immediately call the file system functions, essentially passing the VFS

request through to the file system. The addresses of functions residing within the filter

are inserted into the “in” table (13). These function pointers will replace the original files

system function pointers. Through a series of operating system function calls, the filter is

able to locate the super block for the mounted file system (14). The super block contains

pointers to the file system functions. These pointers are copied to the “out” block (15).

Replacing the pointers originally contained in the super block with the pointers stored

within the “in” block is the final step in the insertion process (16). The fil ter driver now

receives all of the function calls and may either provide additional processing or simply

forward them to the file system.

[0037] In the present embodiment, each time a process is created, the operating system

creates an in-memory structure that, among other things, holds a list of pointers to files

descriptors. Each time a process opens a file for access, a unique file descriptor is created

for that process and the address of the descriptor is added to the list. During the process

of opening a file (17), the VFS calls a function to return the inode (18), or on-disk

descriptor, for the file. This read_inode function is part of the set of f ilter functions

installed during the insertion process described above. The filter must perform a set of

actions similar to those described above to insert itself in the set of inode operation and

file operation functions associated with the file. Figure 3 describes the process of

inserting the filter in the inode and file operation functions. The filter contains a set of

functions to replace the standard file system functions. When a file is opened, the filter

Docket No. 06013.P001Z
Express Mail No. EV049397517US 13

captures the read_inode function from the VFS (17). All file systems mounted below the

standard VFS interface typically return a set of pointers to the inode and file operation

pointers associated with that particular file system. The filter inserts itself by returning

pointers to filter functions in response to this read_inode call . The filter first captures and

saves the file system inode operation function pointers (19) and file operation pointers

(20) by calli ng the file system read_inode function (this enables the filter to call the file

system functions during subsequent file activity). The filter then returns the pointers to

filter functions (21) in response to the initial read-inode call (17) made from the VFS.

[0038] A general process of f iltering file system activity and providing additional data

management processing as part of the normal data path will now be described with

reference to Figure 4. In the embodiment depicted, each time a filter function is called

(22) from the VFS, the filter is able to determine the level of additional processing

requested for the file (23). In some cases, littl e or no processing may be required. For

example, file read and write requests will not typically require any additional processing,

while file open and close requests may require additional processing.

[0039] The architecture of the filter includes two types of interfaces to the application

space. These interfaces are known as IO control, or ioctl, functions. The filter has an

ioctl mechanism that receives a listener request from the transport (24) and an ioctl

mechanism to receive commands and status from the transport. In the event that the

transport is not available, the filter performs no additional processing of the file, passing

the request through to the underlying file system. In the event that the transport is present

and has registered a listen ioctl call with the filter, the filter returns from the ioctl call

with a set of parameters that describe the file and its current state (25). Common states

Docket No. 06013.P001Z
Express Mail No. EV049397517US 14

include “file is being opened” and “ file is being closed” . When the transport completes

the request, it calls the status ioctl to return status on the processing. The filter is able to

pass the file request on to the file system for final processing (26). When the file system

has completed processing the request, it returns status to the filter, and the filter is then

able to pass the status back to the VFS (27) to complete the process.

[0040] Figure 5 is a flow diagram that ill ustrates a general process of associating data

management applications with file system activity according to one embodiment of the

present invention. In this example, the process takes place within the transport

mechanism. When the transport becomes active, it immediately makes a listen ioctl call

to the filter (28). The transport then waits until the filter returns from the call (29). The

returned parameters are immediately saved and the transport spawns a new process or

thread to process these parameters (30). Another li stener ioctl call i s then made to the

filter.

[0041] According to the embodiment depicted, initiation of data management

processing for this file includes the new transport thread or process examining the

parameters and initiating the appropriate application(s) to handle the processing (31).

The interface with the applications is unique to each application. Typical methods of

interfacing include sockets, RPC, and scripts. When the application has completed the

action, status is either obtained directly from the application or separate software code

written to monitor the status (32). The status is then returned to the transport (33), which

then generates an appropriate status to be returned to the filter (34).

[0042] After the transport has delivered the file state information (23) the application

interface is able to process the information and invoke the appropriate data management

Docket No. 06013.P001Z
Express Mail No. EV049397517US 15

application(s) (6).

[0043] According to the described embodiment, extended attributes are stored in the

metadata for each file managed in the system. An application, or applications, (9)

facilit ates retrieving and storing these extended attributes.

[0044] A policy store (8) is included in the system to provide a repository for the

defined policies. Policies may be read from and written to the policy store. The policy

store is organized in such a way that a unique value, or index, can be used to locate any

single policy within the store. The policy store is accessed by the application interface

(7) and any number of specialized applications (10) including, but not limited to, a

graphical user interface.

[0045] Figure 6 ill ustrates a procedure for inserting policies into a policy store

according to one embodiment of the present invention. According to the embodiment of

the present invention ill ustrated in Figure 6, when the administrator responsible for

configuring the system determines a new policy is required, he/she may utili ze one of the

policy store tools (10) to insert a new policy into the store. The store is opened (35) by

the application and the data within the store is read until the application is able to

determine the end of the current policy data (36). The application then inserts the new

policy information (37) into the store at this location and assigns a unique identifier to the

new policy information (38). The unique identifier allows other entities to reference the

new policy. Once the administrator has completed inserting policies in the store, the

store is closed (39) and the tool (10) is terminated.

[0046] Figure 7 ill ustrates a process of setting policy information in the extended

attributes of a file according to one embodiment of the present invention. In this

Docket No. 06013.P001Z
Express Mail No. EV049397517US 16

example, in order for policies to be associated with a file, or set of f iles, the unique

identifier (38) created when the policy that was placed in the store is inserted in the

extended attributes of each affected file. An application (40) designed to access the file

extended attributes is started. The application (41) builds a list of f iles to be modified

based on direction from the administrator. Once the list is built , the application performs

the process of reading the current set of attributes (42) for a file, merging the new

attribute (43) with the unique identifier (38) into the current set of attributes, and writes

(44) the modified attributes back to the file. This process continues until each file in the

list (41) is processed.

[0047] Figure 8 ill ustrates a general procedure for invoking policies for a given file

activity according to one embodiment of the present invention. In the embodiment

ill ustrated by Figure 8, the file system filter (2) notifies the application interface (7)

through the transport (5) each time a file system event, such as a file being closed, occurs

(45). The application interface (7) reads the file extended attributes (46) and determines

whether this file has a policy associated with it (47). In the event there are no policies

associated with this file, the application interface (7) returns the appropriate completion

status (51) to the file system filter (2). When policies are present for a file, the extended

attributes will contain one or more policy store identifiers (38). The application interface

(7) reads the policy store (48), retrieves the policy associated with the unique

identifier(s), and invokes the appropriate set of applications to process the file (49).

When processing is complete the application interface (7) modifies the file extended

attributes as necessary to reflect the current state of the file and the processing associated

with it (50). Completion status (51) is returned to the file system filter (2) when all

Docket No. 06013.P001Z
Express Mail No. EV049397517US 17

processing for the file is complete.

Docket No. 06013.P001Z
Express Mail No. EV049397517US 18

CLAIMS

What is claimed is:

1. A method comprising:

determining the existence of a predetermined event at a storage controller;

responsive to the predetermined event, initiating data management activity for a

storage device associated with the storage controller.

2. The method of claim 1, wherein the predetermined event is a file system event.

3. The method of claim 2, wherein the data management activity includes one or

more of the following:

(a) hierarchical storage management;

(b) storage aggregation or virtualization;

(c) file replication;

(d) backup;

(e) virus scanning; or

(f) encryption.

4. The method of claim 3, wherein said determining the existence of a

predetermined event at a storage controller is accomplished by way of a file system filter

in the operating system of the storage controller.

5. A file system filter for operating systems that is able to capture file system

requests and initiate additional processing for those requests.

Docket No. 06013.P001Z
Express Mail No. EV049397517US 19

6. A transport mechanism that couples a file system filter with an application

environment.

7. A mechanism for enabling data management applications for use by a file system

filter.

8. A mechanism by which external policies may be associated with file system

activity.

Docket No. 06013.P001Z
Express Mail No. EV049397517US 20

ABSTRACT

An intelli gent data management utili ty is disposed between a storage system and a

data source to automatically and transparently initiate appropriate data management

operations without interfering with normal data flow between the data source and the

storage system. According to one embodiment, the intelligent data management utili ty

resides within a storage controller and includes a mechanism for intercepting events, such

as file activity. Based upon the file activity (e.g., file creation, file open, file read, file

write, file close, and the like), the intelli gent data management utili ty invokes one or

more appropriate data management applications using a tightly-coupled transport and

policy store. The transport queries the policy store for actions to be performed and

invokes the appropriate data management application or applications. Upon completion

of the data management tasks, status is returned through the transport to the file system

filter.

Figure 1

���������
	����
������������
�
���������! "�#�%$

&

'%(�)+*
(�,.-�*�/102)�3!*145(.*
6 798!8�:<;�=�>�?!;�@1ACB�A�D1;2E�@!A1F5G.A
?

HJI<K�L#M�NPO%Q�IROTSVUXW1Y"LZS%[

\

]�^R_T`VaXb1c"dZ`%ef]�^R_ d#`�g

h

i�jRkTlVmXn1o"pZl%q

r

sut�v!w�x!y�z%t�{ | y1y�}<~��"v
{
~�z!w�%���#�������!���

�

���
�+���C�1�
���1���<��� ��� ���!�

�

�����<���+�
�J ��¡+¢

£¥¤

¦¨§¨©«ª¨¬®¯ª°
±!²«²®³µ´ ¶¸·¹²«º
»1¼¥¼¨½ ¾ ¿µÀ¥Á®¾ Â¸Ã

Ä

Å

Æ
ÇÉÈËÊ¥ÌÎÍ ÏµÈÎÐ
Ñ
ÒÔÓ¯Õ

Ö¯×µØ«Ù¯ÚÜÛ®ÝËÞ®Ù
ß®àÎá â ãÔä
å"æ«ç°è«é

ê1ëËë¨ì í îµï¥æ¹í ç¸ð

ñóò!ô.õ�ö�ò÷ñ�ø�õTô�ò�øÎù

ú

Figure 2

ûuü�ý�þ�ÿ1ý�ÿ������%ýPÿ����	��
�����	�	���1ÿ������
������� ��!�"#��$�%'&(!)�*�+,�-��+.$/��01+2�435� +

6 "7!	$	��!8$9)�!��:�	;�<=�>�;	3	��? �	�(�/��)@����;��A&(!
B�C4B5D E�FHG�IKJLD E�MON'M5I�P5E�M

Q4R/SUT	V W�X	Y	Z	W�[:\^]�R4S4_�`aR�[ObcR/Y	d V W�ef`�gK](W
X�h/X V W�b

i�j4k�l�mon�p q@r,s�t�rup,nwv'm(qyxzsLp�{8n/|�|'},q	~�~�q�~9j	�
taq�xzm ����}7q	n	p�q�|f�	l�t���p�s(j/t�~

� j4kU��~	l�k	q�}�v'm�j4�4���	l�t���p�s�j�t9k�j�s-t p qw}zp,nwv'm(q
pUj�r2j4l p5rup,n�v^m�q

�^���w�o�4�a�����A�(�8�,�4�5� �/�����	�������(�/�9�	���-� � �������
�	���	�����'���4�4���#���a�f������� �����z�����,�-���

�7�

�7�

�¡

¢¤£

¥§¦

¨ª©

Figure 3

«¬�¯®�°�±A±o²@¬��³�´A±Lµ ¶�·:·,¶	°4¸�¹#´�º5»4¸�¶�³	¼�ºa® µ�´�»/º
°	µ:³�´K±�¶�»4½	¶wº

¬�¾¬'´K±Lµ�¶�·O®�°�±A±o²@¬�¿·7¶	°/¸a¹z´�º »/¸�¶

¬'´K±(¶y»/½	¶�·§°�µ�´(»/º�½�»�´�º µ ¶�·ª²�°�·,¶8² °�Àa¶�¸Á´�º@¬�
³�´K±Lµ ¶�·

´�º5»4¸�¶�¹�»/½	¶�·§°�µ�´(»/º�½�»�´�º µ ¶�·§²�°w·7¶8² °�Àa¶�¸Â´-º
¬�Ã³�´K±Lµ ¶�·

¬�Ã³�´K±Lµ�¶�·�´-º5»/¸�¶�»4½�¶w·§°	µ	´(»/º�°/º�¸�³�´K±(¶
»/½	¶�·§°�µ�´(»/º�½�»�´-º µ ¶�·§²�°w·,¶�·,¶�µ ¼4·Uºa¶�¸Äµ�»Ä«Å¬�

ÆªÇ

ÈÊÉ

ËªÌ

ÍwÎ

Í'Ï

Figure 4

Ð,Ñ�Ð�ÒÔÓ Õ×Ö§ØÙÒÛÚ¤ÜªÝ�ÖÞÜ§ßàÖ¡ØâáªÕ2Ò Ü§ÚãÜ¡Øåä§ÒÔÓ Ö
æªçàè¡éëêªìÊí æ¡îãï2ðàî2ñ¤ì2í æ¡îí òÙñóêUôLô èªõuïàéöæ§÷fø�ù,ú

ûUû

ü7ýUþ�þ7ÿ��������	��
�������(þ
�����
�ëý���� ���

������������� ���������� !�"�	#	�$�&%'�(�) &�(*�+	������,-� ��.
+	�&�����/�0�����1#��2� �3�/��#��&��%- ���� �&�

465	7(8	9�:;7�<>=@?BA

C	D;E(F!G D
H0I	J	K E�G L J
M�N�O�P(Q

RTS P�O U S�V N	W

X1Y

Z\[0]

^&_

`�a

bBc

dfe

g�hji�k�l�m�l;n
oqp r&s�t�u�v
w r&s�x	p�s�y!p"p
z	{ r&|

x { y&}�~��	r { x

� r

� u0~

���

Figure 5

���	�q�!�q���@�����>���������T� �q�@�����!�'���q�!�q�f���������&�
�����/ ¢¡�£@¡B¤� �¥¦����� ¤� �§

¨�©

ª¬«�6®f¯6°�±\«�²´³1¶µ�²&¯¸·f®!²6µ�¹\µ�±qº!²�¹q«&»q²B·q«&®

¼j½f¾�½À¿@Á�Â\ÃÄÁ�Å�¾�Æ�Á�Ç6Å�ÈÊÉ�ÂqË!¾qÌfË�½�Ì�Ì@É"Í
Î Á�ÂqË!Å�ÍBÍ�Å�È

Ï>ÐqÐ�ÑÓÒ"Ô�Õ6ÖfÒ"×6ØÙÒ"ØfÖ�Ú�Û�Ü!Õ6ÔfÚ'Ò�Ý�ÔBÕÞÑßÑ/Ú�àáÖ&×
â"ã�â�ä6â/å6ä�æ�å@çqçqè�é\çqè!â�åfä�æ�å@çqç�êëâ"ìBå6ä6â�éqãqíïîfð

ñ>çqç�êÓâ"ì�åfä6â�éqãÀì!é\òóç�ê�æqä�æqî´å6ã6ôõè�æqäBö�è�ãfî
îBä�å6ä�ö!î÷ä&é¸å\çqç�êÓâ"ì�åfä6â�éqãÙâ"ãfä&æ¶è�ø�åqìfæ

ñ>çqç�êÓâ�ìBå6ä6â�éqã�â"ãfä�æ�è�ø!å6ìfæÙè�æqäBö�è�ãfî÷ä�é
ù�ú�û6üfý6þ�ÿ\ú�ù����"ù�����ü	�
�"ü���ý�ù�û6ù�!ý

ù!ú	ûqüfý6þ�ÿ\ú�ù��>û����qý���ÿ���ù�����û����!ù&ÿ��������¢ý �@ýBù!���
�"�#� ù!��ú ù�ÿ�ú �qù��ú�ü¸ý�ù�û6ù�!ý

$%$

&�'

(")

*
+

*-,

.0/

Figure 6

132
46587�5:9�;0<>=";�?@<�?�A"B%7�9CA0?EDF58G�HI9	;�?@<�B

JLK

M ?-D�58G!HI9	;�?@<�BN5:9O<�B"=�2P=�702NA0?09�5Q;"5R?�7�B@2P=0;
B@702S?"TCG0U�<�<�B%7	;�A"?-D�5VG�HI9�B�;

132
46587�5:9�;�< =";W?%<�5�7�90B-< ;�9O7�B�XYA0?-D�58G�HZ5�7	;�?
9�;�?%<�B

[�\�]Y^0_-`�a8b!cdafe�g�e�e@aQh@i�\@jIgIk"i�aQl�k0\Cm�g-`Vk0\
aVjE\%i�n�aQo�cpa8i	hOn�q�g0n�i�\�]Y^0_-`�aVb�c

r j
s6a8i�a:e�n�t g"n�_@t�b�`:_0e�\"eC^0_E`�aVb�cIe	n�_@t�\

uwv

u-x

uwy

uwz

Figure 7

{3|�|%}�~V���"�"~R�����W�������p~R���P�@~#}R�����
�	�%�0�-�@�
�0�W�0��~��E�	�	�"�I~:�������@���	�@�

���

{3|�|%}�~8�W�"�"~R���O�-�@~�}V�@�I}�~f�����"���@~#}Q�"�����
|��!�����"�	�

���

�E�
�	�%�0�E�@�I�"�W���� F¡-¢��	�"£�¤�¥@��¤@ #¦R�C�@���S���"���

§�¨

© ��ª«�"�W���� F¡-¢����"£C�-�"£"¬��	 F¡L ��	P®0¥-¦� 8¬� V�"£��%���
���
�-�@�

§�¯

�E�
���%�0�E�@�P�0�W���� F¡-¢��	�0£�¤�¥@��¤@ #¦R�C�@���
ª°�� Q�W���%�

§p§

Figure 8

±�²	²0³V´Qµ!¶W·W´f¸	¹�´:¹W· º"»½¼�¶�µ�º6´�¾3¹W¸W·�´f¼�´Qº	¿�¸W¼�¼�´F³�º
¶	µ!·�´�À�´f·ÂÁ�¼	»½¸�Ã«¼�´F³�º�¾>Á	¾�·�º�Ã«¼�´F³ ·�º"»

±�²	²0³V´Qµ!¶W·W´f¸	¹�´:¹W· º"»½¼�¶�µ�º�»>º	¶�¿"¾°¼�´F³�º
Ä	Å�Æ�Ä�Ç�È�Ä	È�É�Æ Æ�Ê�Ë8Ì�Í�Æ�Ä�Î

Ï�Ð	Ð�Ñ ËRÒ!É�Æ�ËfÓ	Ç�Ë:ÇWÆ Ä"Ê½Ô�É	Ò�Ä�Ê>Ä	É�È"Î Ð Ó Ñ ËQÒ ÕÖÎ�Æ Ó0Ê>Ä

×�Ø	Ø0ÙVÚQÛ!ÜWÝWÚ:Þ�ß�Ú:ßWÝ�à"á½â�Ü�Û�à�Ú:ß�ã!Þ0ä�à�å
Ü�Ø�Ø0ÙVÚQÛ�Ü�Ý�ÚfÞ	ß�åÖæ�Ü�å!à	ç�Þ	ß�Ø�Þ�ÙVÚRÛ>è

é�ê Ý�à�ß�ç�à	ç�Ü�Ý Ý�á�Ú�æ�ë�Ý à�åíìîÞWçEÚfâ�ÚQà	ç�Ý>Þ
ï>ð	ñ0ò�ð�ó!ôöõ�ð�÷Sø�ô ù�ô�ú!ø

û�ü ò�ðÖø>ý�ø!ô ð�þ«ñ ü ò ô�ð"ï ü ø3õ�ÿ�ô ü ñ ü ð���ÿ�ñ
ó!ÿ�þ��0ò�ð	ô ü ÿ	õ�ø!ô>ùWô ú�ø

�����
	�������
����������� ����	 �
� � ��� �����

�����

 !

"$#

"&%

"('

"*)

"&+

#-,

#$.

