System to provide policy-based management of kernel and application software
Abstract

The system provides the means by which data management policies are implemented and carried out in a data storage system. The system is implemented as an application that uses a transport mechanism ((maybe delete “uses a transport mechanism to” and change to “interfaces with”) to interface with a file system filter or block-level logical volume manager. The design provides a mechanism that is more easily upgraded and modified without causing interruption to normal data flow, by implementing the policies and management in the application space,. Pure kernel-based implementations require in the best case that old drivers be unloaded and new drivers loaded. While this is a relatively short process, the system in unavailable throughout the duration of the upgrade. More primitive designs require the system to be stopped and restarted (rebooted) to complete a software upgrade. This design allows for upgrades and new policies to be administered with no disruption to file system activity.

Inventors

Perry Merritt (Broomfield, CO), Don Jessup (Denver, CO), Kevin Martindale (Boulder, CO), Jay Miller (Boulder, CO), June Mullins (Denver, CO)

References cited

Claims

1. A method to store policies to control data management activity for a given file or set of files.

2. A method for associating policies with a file or set of files.

3. A method for invoking data management activity as the result of file system activity

Description

Field of the invention

This invention relates to Network Attached Storage (NAS) systems that use Linux or Unix operating systems as their base. In particular, it describes a mechanism that is inserted in the application space of the kernel and interfaces to kernel-level drivers inserted in the data path for file system IO and block-level IO, for the purpose of associating data management activities with IO activities.

Problem

Storage products are typically designed with limited function. They are designed to store electronic data and to provide access to that stored data. Management of these storage devices is left to external mechanisms resulting in difficult configuration and management issues. For example, storage devices, whether network attached or SCSI/Fibre channel attached are not currently designed with a mechanism to back up, or replicate, themselves to another storage device such as magnetic tape. The consumer of the storage system is left with the task of creating a backup server, or integrating the new storage device into an existing backup environment. In doing so, the consumer is faced with many decisions including deciding the best data path to use for transporting the electronic data from the storage device to the backup storage device, and when to schedule the backup so that the least interruption to service is incurred while maintaining as complete a backup as possible.

Other issues such as replication to remote facilities, virus scanning, and encryption are typically solved in a similar fashion. That is, an external mechanism is brought into play to manage the electronic data stored on the storage device.

Solution

The problems described above are solved and a technical advance is made by coupling file system activity within the storage system with a policy-based management mechanism. Doing so reverses the paradigm of storage devices being used and managed by applications to that of storage devices using applications to manage themselves.

When file system events such closing the file after processing is complete, a set of rules, or policies, may be invoked to determine the post processing desired for that file. By providing a policy-store, administrators of the system are able to describe the desired post processing activity and save it for repetitive use.

Brief description of the drawings

Figure 1 illustrates the complete architecture of the system in which the policy-based management mechanism is installed.

Figure 2 illustrates the procedure for inserting policies into the policy store.

Figure 3 illustrates the process of setting policy information in the extended attributes of a file.
Figure 4 illustrates the general procedure for invoking policies for a given file activity.

Detailed description

In a standard Unix operating system, including Linux, access to file systems is provided through a mechanism known as the virtual file system (1), or VFS. The VFS provides a standard interface to the operating system allowing the file system implementation to be transparent to the operating system. File systems (3) are only required to conform to the VFS interface published for file systems use.

In this system a file system filter (2), hereafter also known as filter, has been inserted between the file system and the VFS. The filter provides two ioctl interfaces into the filter. One of the interfaces acts as a listener, while the other acts as a sender. The Transport (4) uses these interfaces to communicate status and to receive commands.

The transport is linked to the Application Interface (6) through a private API. The Transport is capable of instantiating multiple copies of the Application Interface to process multiple files simultaneously. The Application Interface communicates with the data management applications (5) through mechanisms such as command line interfaces, sockets and scripts.
(I suddenly don’t like the term Application Interface. It’s too close to API. I know we used it in the first patent paper also. Is there a better term? How about Application Controller or Application Manager or Application Supervisor?
This system requires that extended attributes can be stored in the metadata for each file managed in the system. An application, or applications, (7) facilitate retrieving and storing these extended attributes.

A policy store (8) is included in the system to provide a repository for the defined policies. Policies may be read from and written to the policy store. The policy store is organized in such a way that a unique value, or index, can be used to locate any single policy within the store. The policy store is accessed by the application interface (6) and any number of specialized (?) applications (9) including, but not limited to, a graphical user interface. (I’m not sure what you mean here.
When the administrator responsible for configuring the system determines a new policy is required, he/she utilizes one of the policy store tools (9) to insert a new policy into the store. The store is opened (10) by the application and the data within the store is read until the application is able to determine the end of the current policy data (11). The application then inserts the new policy information (12) into the store at this location and assigns a unique identifier to the new policy information (13). The unique identifier allows other entities to reference the new policy. Once the administrator has completed inserting policies in the store, the store is closed (14) and the tool (9) is terminated.

In order for policies to be associated with a file, or set of files, the unique identifier (13) created when the policy was placed in the store is inserted in the extended attributes of each affected file. An application (15) designed to access the file extended attributes is started. The application (16) builds a list of files to be modified based on direction from the administrator. Once the list is built, the application performs the process of reading the current set of attributes (17) for a file, merging the new attribute (18) with the unique identifier (13) into the current set of attributes, and writes (19) the modified attributes back to the file. This process continues until each file in the list (16) is processed.
(This is a little strange to me but I think it’s essentially correct. It sounds like the administrator builds a list of files to apply a policy to. I think what really happens is that the administrator builds a list of policies to apply to a file or set of files (i.e., the file, not the policy, is the unit of operation). However, that’s a nit.
The file system filter (2) notifies the application interface (6) through the transport (4) each time a file system event, such as a file being closed, occurs (20). The application interface (6) reads the file extended attributes (21) and determines whether or not this file has a policy associated with it (22). In the event there no policies associated with this file, the application interface (6) returns the appropriate completion status (26) to the file system filter (3). When policies are present for a file, the extended attributes will contain one or more policy store identifiers (13). The application interface (6) reads the policy store (23), retrieves the policy associated with the unique identifier(s), and invokes the appropriate set of applications to process the file (24). When processing is complete the application interface (6) modifies the file extended attributes as necessary to reflect the current state of the file and the processing associated with it (25). Completion status (26) is returned to the file system filter (3) when all processing for the file is complete.

Summary

Drawings

[image: image1.wmf]Application interface is notified of file

activity from file system filter

Application interface reads file

extended attributes

Application interface reads policy store

Application interface invokes

applications based on policy

Extended attributes modified to

reflect new status

File system filter is notified of

completion status

Are there

policies to

process

Yes

No

20

21

22

23

24

25

26

 [image: image2.wmf]Unix/Linux Operating System

4

Kernel Environment

Application Environment

Virtual File System

1

File System Filter

2

File System

3

Transport

Application

Interface

5

Data Mgt

Application

6

Policy

Store

9

Extended

Attribute

Application

8

7

Graphical

User

Interface

Policy

Store

Application

[image: image3.wmf]Administrator opens policy store

10

Policy store is read and positioned at

end of current policy set

Administrator inserts new policy into

store

New policy is assigned a unique value

identifying that new policy

Administrator closes policy store

11

12

13

14

[image: image4.wmf]Application to modify file extended

attributes is started

15

Application builds list of files to

process

16

Extended attributes for file are read

17

New attributes describing policies are

added

18

Extended attributes for file are

written

19

Figure � SEQ Figure * ARABIC �1�

Figure � SEQ Figure * ARABIC �2�

Figure � SEQ Figure * ARABIC �3�

Figure � SEQ Figure * ARABIC �4�

