System to capture file activity for the purpose of providing intelligent data management
Abstract

The system provides a mechanism necessary to intercept file activity without interfering with normal data flow. The system is comprised of four major components: a file system filter, a transport, a policy store, and data management applications. The system monitors file control activity such as file creation, file open and file close. When these events occur the system invokes data management applications through the use of the tightly-coupled transport and policy store. The transport queries the policy store for actions to be performed and invokes the appropriate data management application or applications. Upon completion of the required data management tasks, status is returned through the transport to the file system filter.

Inventors

Perry Merritt (Broomfield, CO), Jay Miller (Superior, CO), Don Jessup (Denver, CO), Kevin Martindale (Boulder, CO), June Mullins (Denver, CO)

References cited

Claims

1. A file system filter for Unix operating systems that is able to capture file system request and initiate additional processing for those requests.

2. A transport mechanism that couples the file system filter with the application environment in the Unix operating system

3. A mechanism for enabling data management applications for use by the file system filter.

Description

Field of the invention

This invention relates to Network Attached Storage (NAS) systems that use Linux or Unix operating systems as their base and in particular a mechanism that is inserted between the Virtual File System (VFS) and a file system for the purpose of monitoring and redirecting file system activity.

Problem

Storage products are typically designed to function within a limited scope. They are designed to store electronic data and to provide access to that stored data. Management of these storage devices is left to external mechanisms, resulting in difficult configuration and management issues. For example, storage devices, whether network attached or SCSI/Fibre channel attached, are not currently designed with a mechanism to back up or replicate themselves to another storage device such as magnetic tape. The consumer of the storage system is left with the task of creating a backup server, or integrating the new storage device into an existing backup environment. In doing so, the consumer is faced with many decisions including deciding the best data path to use for transporting the electronic data from the storage device to the backup storage device and when to schedule the backup so that the least interruption to service is incurred while maintaining as complete a backup as possible.

Other issues such as replication to remote facilities, virus scanning, and encryption are typically solved in a similar fashion. That is, an external mechanism is brought into play to manage the electronic data stored on the storage device.

Solution

The problems described above are solved and a technical advance is made by inserting a file system filter between the Unix virtual file system and the file system and coupling that filter with an application interface and transport mechanism. Doing so reverses the paradigm of storage devices being used and managed by applications to that of storage devices using applications to manage themselves.(Excellent!

The filter driver monitors events such as file open and file close. When these events occur a message is sent from the filter driver through the transport to the application interface. The application interface is able to invoke the appropriate application and perform the desired operation.

Brief description of the drawings

Figure 1 illustrates the overall architecture of the system in which the intelligent data management system is installed.

Figure 2 illustrates the process to insert the file system filter in the system.

Figure 3 illustrates the process of replacing the standard file system call sequence to include the file system filter.

Figure 4 illustrates the general process of redirecting the standard file system call sequence to the intelligent data management system.

Figure 5 illustrates the general process of associating data management applications with file system activity

Detailed description

In a standard Unix operating system, including Linux, access to file systems is provided through a mechanism known as the virtual file system (1), or VFS. The VFS provides a standard interface to applications that use the file system, allowing the file system implementation to be transparent to the applications using it. File systems (3) are only required to conform to the published VFS interfaces. Below the file system reside the device drivers (4) that provide block-level interface to the file system and device specific access to the physical storage attached to the system.

In this system, a file system filter (2), hereafter also known as filter, has been inserted between the file systems and the VFS. The filter provides two ioctl interfaces. One of the interfaces acts as a listener, while the other acts as a sender. The Transport (5) uses these interfaces to receive commands and communicate status respectively.

The transport is linked to the Application Interface (6) through a private API. The Transport is capable of instantiating multiple copies of the Application Interface to process multiple files simultaneously. The Application Interface communicates with the data management applications (6) & (8) through mechanisms such as command line interfaces, sockets and scripts.

The filter may be inserted into the system any time after the file system (3) has registered with the VFS (1). The process of inserting the filter involves creating two sets of function pointers (9) (a set of “in” pointers and a set of “out” pointers) to link the filter to the VFS and the file system. The “in” function pointers replace the functions file system functions normally called by the VFS and the “out” pointers refer to the file system functions. Thus, the VFS will call the functions (10) in the filter driver as if it were calling the file system pointers and the filter will either provide additional processing before passing the request to the file system functions or immediately call the files system functions, essentially passing the VFS request through to the file system. The process of inserting the filter is described in Figure 2.

Each time a process is created, the operating system creates an in-memory structure that, among other things, holds a list of pointers to files descriptors. Each time a process opens a file for access, a unique file descriptor is created for that process and the address of the descriptor is added to the list. During the process of opening a file (15), the VFS call a function to return the inode (16), or standard descriptor, for the file.
(Note that as in our beloved former file system, the inode is constructed (from several sources, I think).
This read_inode function is part of the set of filter functions installed during the insertion process described above. The filter must perform set of actions similar to those described above to insert itself in the set of inode operation and file operation functions associated with the file. Figure 3 describes the process of inserting the filter in the inode and file operation functions. The filter contains a set of functions to replace the standard file system functions. When a file is opened, the filter captures the read_inode function from the VFS (15). The standard VFS interface requires that all file systems mounted below it return a set of pointers to the inode and file operation pointers associated with that particular file system. The filter inserts itself by returning pointers to filter functions in response to this read_inode call. The filter first captures and saves the file system inode operation function pointers(17) and file operation pointers(18) by calling the file system read_inode function (this enables the filter to call the file system functions during subsequent file activity). The filter then returns the pointers to filter functions (19) in response to the initial read-inode call (15) made from the VFS.

Figure 4 describes the general process of filtering file system activity and providing additional data management processing as part of the normal data path. Each time a filter function is called (20) from the VFS, the filter is able to determine the level of additional processing requested for the file (21). In some cases little or no processing may be required. For example, file read and write requests will not typically require any additional processing, while file open and close requests may require additional processing.
The architecture of the filter includes two types of interfaces to the application space. These interfaces are known as i IO control, or ioctl, functions. The filter has an ioctl mechanism that receives a listener request from the transport (23) and an ioctl mechanism to receive commands and status from the transport.
(I don’t like the terms blocking and non-blocking here. The fact that the listener ioctl is blocking and the sender (is there is better term?) is non-blocking is incidental to the fact that the listen ioctl doesn’t return until there is some I/O request to process, while presumably a status response can be processed by the filter driver immediately.
In the event that the transport is not available, the filter performs no additional processing of the file, passing the request through to the underlying file system. In the event that the transport is present and has registered a listen ioctl call with the filter, the filter returns from the ioctl call with a set of parameters that describe the file and its current state (24). Common states include “file is being opened” and “file is being closed”. In order to prevent serial access through the filter, the file request is queued in the filter (25) allowing the filter to continue processing additional requests.
(I agree with the other guys that (25) is probably unnecessary and anyway is too detailed to include.

When the transport completes the request, it calls the send ioctl to return status on the processing. The filter is able to pass the file request on to the file system for final processing (26). When the file system has completed processing the request, it returns status to the filter, and the filter is then able to pass the status back to the VFS (27) to complete the process.

The process within the transport mechanism is described in Figure 5. When the transport becomes active, it immediately makes a listen ioctl call to the filter (28). The transport then waits until the filter returns from the call. The returned parameters (29) are immediately saved and the transport spawns a new process or thread to process these parameters(30). Another listener ioctl call is then made to the filter.
To initiate the data management processing required for this file, the new transport thread or process examines the parameters and initiates the appropriate application(s) to handle the processing (31). The interface with the applications is unique to each application. Typical methods of interfacing will include sockets, RPC, and scripts. When the application has completed the required action, status is either obtained directly from the application or separate software code written to monitor the status (32). The status is then returned to the transport (33), which then generates an appropriate status to be returned to the filter (34).

Summary

The system to capture file activity for the purpose of providing intelligent data management to a storage system serves to allow storage systems to use data management applications as part of the base functionality they provide.

Drawings

[image: image1.wmf]VFS calls FS filter read_inode function

at file open

FS Filter calls FS read_inode

File operation pointers are saved in FS

filter

inode_operation pointers are saved in

FS filter

FS filter inode operation and file

operation pointers are returned to VFS

16

15

17

18

19

[image: image2.wmf]Unix/Linux Operating System

5

Kernel Environment

Application Environment

Virtual File System

1

File System Filter

2

File System

3

Device Drivers

4

Transport

Application

Interface

6

Application

Application

8

7

[image: image3.wmf]Create two sets of VFS function

pointer tables, "in" and "out"

Create a set of VFS functions in file

system filter driver

Locate super block for mounted file

system

Populate "in" table with addresses of

newly created functions

Copy super block function pointer table

to "out" table

Replace file system function pointer in

super block with pointer to "in"

10

9

11

12

13

14

[image: image4.wmf]FS Filter inode operation or file

operation function is called from VFS

20

Call FS inode or file operation

return ioctl call from transport with

pertinent file information

Return to VFS

Is this

function

being

monitored

No

Yes

27

26

24

21

Is there a

blocked

ioctl call

from

transport

Queue operation until ioctl status call is

recieved from transport

Yes

25

23

[image: image5.wmf]Transport makes blocking ioctl call to

file system filter

28

Transport waits until ioctl return

Data from returned ioctl call is

processed

Application interface is called to

initiate appropriate application(s)

Application completes and returns

status to application interface

Application interface returns to

transport with ending status

transport makes ioctl call to file system

filter to return status

33

29

30

31

32

34

Figure � SEQ Figure * ARABIC �3�

Figure � SEQ Figure * ARABIC �1�

Figure � SEQ Figure * ARABIC �2�

Figure � SEQ Figure * ARABIC �5�

Figure � SEQ Figure * ARABIC �4�

