Introduction

A recent development in the information industry is the concept of appliances. In a nutshell, an appliance is a product that specializes in a single function. Appliances require very little configuration, management and maintenance effort. The system administrator simply plugs them in and they work.

Antera Storage Concepts has developed the Versatile Storage Architecture (VSA), which embraces the appliance concept to solve the storage problems IT professionals face on a daily basis while delivering true differentiation in the storage market.

There are three underlying concepts inherent in the VSA software: flexibility, standards compliance and reuse. These three key ideas can be found everywhere in the architecture. It is these ideas that allow Antera Storage concepts to deliver robust, high-performance systems to the market in a very short amount of time; and that will allow the Antera Storage architecture to continually adjust to meet market needs. The initial Antera offering will provide an appliance for archival applications; however, Antera’a architectural flexibility enables different applications to be “plugged in” as other market needs emerge.

The Antera Virtual Storage Architecture provides a unique blend of software modules that may be combined to form powerful storage solutions. The VSA is made up of both kernel and application space modules. While the VSA application modules are proprietary, they provide open interfaces, thus encouraging the development of third-party software to take advantage of, and build upon, the features provided by the VSA.

Antera has developed a flexible design that moves the largest portion of the VSA functionality to the user, or application, space of the operating environment. This provides for a thinner, more robust kernel-level code. What that means to the end-user is a more stable platform that is easily upgraded or enhanced. What this means to the third-party developer is an environment that is easier to develop in, resulting in more functionality in less time.

Figure 1 shows the basic components of the software architecture and their location with in the Linux operating system. In brief, the interaction between components can be described as follows:

· The ADML (Antera Data Management Layer) is a kernel-level module that examines requests from the file system, and that may take additional action on the request, depending on the properties of the file and the nature of the request. If additional action is necessary, requests for these actions are delivered to specialized ITK Interface Toolkit) modules, which complete the actions in user space. As an example, the ADML may discover that an input file has been archived to tape. In this case, it will initiate activation of a user-space tool to restore the file to disk.

· An interface tool may determine that characteristics of a file must be changed. In this case, the tool will communicate with the ADML to request the appropriate changes.

We need a better example here, since Perry’s comment above is correct – changes to the Extended Attributes are made by direct calls to the file system, and do not involve the ADML.
Each of the VSA components is briefly described in the sections following. More detail on each component is given in the architectural and design documents for that component. The components shown in the shaded blocks are those developed by Antera. The remaining blocks are either part of the standard operating system or software applications provided by third parties.

[image: image1.wmf]Kernel Space

User Space

VFS

ADML

File System

Interface

Tool

Logging

3rd Party

Software

ARVM

Block Device Drivers

Portal

3rd Party

Software

Configuration

DB

3rd Party

Software

User

Interface

EAI

RM

Interface

Tool

Interface

Tool

Figure 1

Kernel

Initial releases of the VSA are based on the Linux operating system and take advantage of the modular approach the developers of Linux have implemented.

ADML

The Antera Data Management Layer, or ADML, is inserted between the Linux Virtual File system and any modern Linux file system. The ADML maintains a set of extended metadata for each file in the system. By residing between the VFS and the underlying file systems, the ADML is able to provide advanced policy-based management for every file in the system.

The ADML is made up of two components: Request Manager (RM) and the Extended Attribute Interface (EAI).

Request Manager

The request manager is responsible for examining the metadata for each file and invoking specific actions based on the policies contained within the metadata. Typically the request manager is only invoked during file open and close. There are very few cases when the request manager becomes involved normal read or write requests.
Extended Attribute Interface (EAI)

The Extended Attributes Interface component of the ADML provides a file system neutral set of kernel-level API calls to set and retrieve the extended attributes. This layer is necessary because there is no current standard for manipulating extended attributes. Each file system that supports extended attributes has its own set of extended attribute function calls; and the EAI provides a set of standard extended attribute wrappers, thus removing the necessity of the Request Manager to by file-system aware.

(Is this true – specifically, are there any other file-system peculiarities we have to worry about, or can everything else be handled through the VFS?
ARVM

The Antera RAID Volume Manager (ARVM) provides scalable RAID protected block storage devices. The ARVM is inserted below any file system and above the physical device drivers.

Portal

The portal provides the communication mechanism between the VSA kernel modules (the ADML) and the VSA applications (the interface tools). The portal is a persistent application that communicates with the VSA kernel modules via proprietary IOCTL calls.

The portal supports a set of API calls for requests and responses from the Interface Tools. Thus, only the portal communicates directly with the ADML. The portal is responsible for translating tool module API requests into the appropriate IOCTL request to the ADML. The portal also receives requests from the ADML via an outstanding IOCTL. When the ADML replies to that IOCTL it does so with a request for action. The portal is responsible for initiating the appropriate application space activity to service the request.

User/Application Space

As mentioned earlier in the paper, a large portion of the VSA resides in the user, or application, space within the operating system. Placing the functionality in the user-space decreases the involvement of kernel-level code, thus reducing the opportunity for system failures. It also allows for rapid development of new features, and the opportunity for specialized functionality to be added with no disruption to service.

Interface Toolkit
The Interface Tools are where the policies associated with each file are actually implemented. In many cases, the tool is primarily a bridge to existing third party software. In this case, the tool itself contains little logic, while the third party software performs the bulk of the work. For example, if a file contains a policy that requires it to be backed up immediately after closing, the portal will send the backup request to the appropriate Interface Tool, which will then invoke the appropriate backup utility.

The Interface Toolkit provides the VSA with the ability to rapidly incorporate new functionality into the system. Some examples of potential tool modules include an archive interface tool, responsible for freeing the disk space associated with an archived file; and a backup interface tool, responsible for overseeing backups of the file system to tape.
As shown in Figure 2, some interface tools communicate directly with the portal via the API. A set of command tools is also provided. Thus, application tools may request services by starting specific command tools, rather than by issuing direct API calls to the portal.

[image: image2.wmf]Interface Toolkit

ADML

Portal

Command

Tool

Application

Tool

IOCTL

API

API

Command

Figure 2
Logging

The logging component provides the ability to record VSA events in a system log.

Configuration

The configuration module manages and persists the system configuration.

UI

The user interface is designed to be a thin client component with a larger component residing in the system. The user interface provides the ability to maintain file management policies, as well as to alter the system configuration.

_1065775544.vsd

_1065776822.vsd

