Introduction

A recent development in the information industry is the concept of appliances. In a nutshell, an appliance is a product that specializes in a single function. Appliances require very little configuration, management and maintenance effort. The system administrator simply plugs them in and they work.

Antera Storage Concepts has developed the Versatile Storage Architecture (VSA), which embraces the appliance concept to solve the storage problems IT professionals face on a daily basis while delivering true differentiation in the storage market.

There are three underlying concepts inherent in the VSA software: flexibility, standards compliance and reuse. These three key ideas can be found everywhere in the architecture. It is these ideas that allow Antera Storage concepts to deliver robust, high-performance systems to the market in a very short amount of time; and that will allow the Antera Storage architecture to continually adjust to meet market needs. The initial Antera offering will provide an appliance for archival applications; however, Antera’a architectural flexibility enables different applications to be “plugged in” as other market needs emerge.

The Antera Virtual Storage Architecture provides a unique blend of software modules that may be combined to form powerful storage solutions. The VSA is made up of both kernel and application space modules. While the VSA application modules are proprietary, they provide open interfaces, thus encouraging the development of third-party software to take advantage of, and build upon, the features provided by the VSA.

Antera has developed a flexible design that moves the largest portion of the VSA functionality to the user, or application, space of the operating environment. This provides for a thinner, more robust kernel-level code. What that means to the end-user is a more stable platform that is easily upgraded or enhanced. What this means to the third-party developer is an environment that is easier to develop in, resulting in more functionality in less time.

Figure 1 shows the basic components of the software architecture and their location with in the Linux operating system. In brief, the interaction between components can be described as follows:

· The ADML (Antera Data Management Layer) is a kernel-level module that examines requests from the file system, and that may take additional action on the request, depending on the properties of the file and the nature of the request. If additional action is necessary, requests for these actions are delivered to specialized ADC (Application Dependent Code) modules, which complete the actions in user space. As an example, the ADML may discover that an input file has been archived to tape. In this case, it will activate a user-space application to restore the file to disk.

· ADC software may determine that characteristics of a file must be changed. In this case, the ADC will communicate with the ADML to request the appropriate changes. As an example, the user may, via the user interface (UI), change the archival policy associated with a file. The UI sends the change request to the ADC, which delivers the change request to the ADML. The ADML then records the actual change.

Is any of this ADC setting stuff done anymore? I though the bulk of the EA setting was now being done through the user interface into the VFS.

Each of the VSA components is briefly described in the sections following. More detail on each component is given in the architectural and design documents for that component. The components shown in the shaded blocks are those developed by Antera. The remaining blocks are either part of the standard operating system or software applications provided by third parties.

[image: image3.wmf]Kernel Space

User Space

VFS

ADML

File System

ADC

ADC

ADC

3rd Party

Software

ARVM

Block Device Drivers

Portal

3rd Party

Software

User

Interface

3rd Party

Software

Configuration

DB

Logging

Figure 1
I modified the drawing, and never published it, based on Jay’s comments on the above drawing. Here it is if you’re interested.
[image: image1.wmf]Kernel Space

User Space

VFS

ADML

File System

ADC

ADC

Logging

ADC

3rd Party

Software

ARVM

Block Device Drivers

Portal

3rd Party

Software

Configuration

DB

3rd Party

Software

User

Interface

PDM

RM

Kernel

Initial releases of the VSA are based on the Linux operating system and take advantage of the modular approach the developers of Linux have implemented.

ADML

The Antera Data Management Layer, or ADML, is inserted between the Linux Virtual File system and any modern Linux file system. The ADML maintains a set of extended metadata for each file in the system. By residing between the VFS and the underlying file systems, the ADML is able to provide advanced policy-based management for every file in the system.

The ADML is made up of two components: the Persistent Data Manager (PDM) and the Request Manager (RM).

Persistent Data Manager

The Persistent Data Manager is responsible for maintaining the VSA extended attributes. These attributes embody such characteristics as the management policy associated with a file, as well as the relevant file status information.

The VSA extended attributes are integrated into file system metadata (via standard extended attribute interfaces). However in the event the file system and all of its data are destroyed, the PDM is responsible for providing a safe copy of all of the VSA metadata. Therefore, the PDM is also responsible for furnishing persisted data that contains enough information to rebuild an image of the file system structure in a fraction of the time required by a tape restore.
I thought all of this was going to be accomplished through a user program and not in the kernel. Did that idea change?
Request Manager

The request manager is responsible for examining the metadata for each file and invoking specific actions based on the policies contained within the metadata. Typically the data manager is only invoked during file open and close. There are very few cases when the data manager becomes involved normal read or write requests.

ARVM

The Antera RAID Volume Manager (ARVM) provides scalable RAID protected block storage devices. The ARVM is inserted below any file system and above the physical device drivers.

Portal

The portal is a key component in the VSA. It is a conceptual entity that straddles the border between kernel space and application space. The portal provides the communication path between the VSA kernel modules and the VSA applications.

Communication is accomplished via proprietary IOCTL calls. When an ADC module wishes to initiate some ADML action, it does so via a specific IOCTL request. The ADML uses a very slightly more complex method to request ADC actions. The ADC module must register with the ADML, and must have an outstanding IOCTL request pending. When the ADML is ready to initiate some ADC function, it replies to the outstanding IOCTL, passing enough information for the ADC to process the request.
I thought the IOCTL stuff was done through a piece of software called the portal and that ADC communicated with the ADML through the portal. Have we eliminated the idea of a single application communicating with the ADML? I also thought we were going to create an API for ADCs to communicate with the portal. I realize that this basically just places a wrapper around the IOCTL, but I think it’s a good thing for us to do.
User/Application Space

As mentioned earlier in the paper, a large portion of the VSA resides in the user, or application, space within the operating system. Placing the functionality in the user-space decreases the involvement of kernel-level code, thus reducing the opportunity for system failures. It also allows for rapid development of new features, and the opportunity for specialized functionality to be added with no disruption to service.

ADC

ADC is a generic term that stands for Application Dependent Code. The ADCs are where the policies associated with each file are actually implemented. In many cases, the ADC is primarily a bridge to existing third party software. In this case, the ADC itself contains little logic, while the third party software performs the bulk of the work. For example, if a file contains a policy that requires it to be backed up immediately after closing, the RM will send the backup request to the appropriate ADC, which will then invoke the appropriate backup utility.
This seems like a good argument for not having the ADCs talk directly to the ADML. Is the ADML now supposed to know which ADC to call to perform a specific action? This was all supposed to happen in the portal. That way there is a single blocked IOCTL into the ADML and the portal application is the only thing that needs to be changed in the event new ADCs are to be called.
ADCs provide the VSA with the ability to rapidly incorporate new functionality into the system. Some examples of potential ADC modules include an archive ADC, responsible for freeing the disk space associated with an archived file; and a backup ADC, responsible for overseeing backups of the file system to tape.

Logging

The logging component provides the ability to record VSA events in a system log.

Configuration

The configuration module manages and persists the system configuration.

UI

The user interface is designed to be a thin client component with a larger component residing in the system. The user interface provides the ability to maintain file management policies, as well as to alter the system configuration.

� EMBED Visio.Drawing.6 ���

[image: image2.wmf]Kernel Space

User Space

VFS

ADML

File System

ADC

ADC

ADC

3rd Party

Software

ARVM

Block Device Drivers

Portal

3rd Party

Software

User

Interface

3rd Party

Software

Configuration

DB

Logging

_1064833393.vsd

_1064937589.vsd

